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1. TAUBERIAN THEOREMS

The following theorem due to Abel should be well known by every
student of mathematics:

If (a,)T is a real sequence with

(1.1)

o[V18
o
X
I

then

lim} a,x"=s. (1.2)

xT1 0

The converse result, that (1.2) implies (1.1), is not true without further
assumptions as the example

a,x"=L(1+x)"1(1—x)

o138

shows, where aq =1, a,=(—1)" for n=1, 2,.... The first converse theorem
was given by A. Tauber in 1897, who proved that

na,=o(l)

is a condition that together with (1.2) implies (1.1}. The theory was further

developed by Hardy and Littlewood, who named such converse theorems

“Tauberian” and gave applications, for instance, to number theory. The
42
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most famous of their Tauberian theorems (Hardy and Littlewood [107)
reads:
If na,= —1 for all n, then (1.2) implies (1.1).

A closely related result says that, if « is positive, then

lim (1 —x)*Y a,x"=s (1.3)

xT1 0
and

n' " a, > —1, (1.4)
imply that
N s
lim N™* = 1.5
" %"” T+ (L5)

It is easy to check that no generality is lost, if we replace (1.4) by ¢, 2 0. In
this form the theorem is a good starting point for the introduction of
Tauberian remainder theorems and the presentation of Freud's fundamen-
tal result in this field.

2. TAUBERIAN REMAINDER THEOREMS FOR THE LAPLACE TRANSFORM

In a remainder theorem we assume that we have some information on
the speed of convergence in (1.3), for instance, that

(1 —x)“‘f:anx"=s+o((l —x)%),  §>0.

Does that give us more and better information than (1.5), if 4, >0? The
answer is yes!

It is a little easier to write the formulas, if we replace the power series by
the more general Laplace transform. The Tauberian theorem given at the
end of Section 1 can be restated:

If T is a nondecreasing function on [0, c0) and o is positive, then it follows
from

(o o)
lim ¢* j e " du(u)=s,
t10 0

that

. Y
Jim X7 = F Ty
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The first precise remainder estimate in this theorem was given by Freud in
[1]. Several mathematicians were working on the problem at this time.
Somewhat weaker results were published the same year by Korevaar and
Postnikov. The main contributions besides Freud’s were given by Korevaar
in a sequence of papers (Korevaar [13-15]). Among other things
Korevaar had provided an example showing that Freud’s seemingly weak
estimate cannot be improved. Freud once told me that he had had his
estimate for some time but first when he heard about Korevaar’s example
he dared to publish it.

I next state Freud’s main theorem. We shall discuss some of the other
results he obtained in his papers (Freud [1, 2]) in Section 5.

FRrEUD’S THEOREM. Let 1 be nondecreasing on [0, o0) and let o and & be
positive numbers. If

F(t):LOO e~ de(u)=st~" +o(£~%),  1]0, (2.1)
then
o x[l
(x) = r(1+a)+0(ﬁg_x>’ X - . (22)

The crucial lemma used in the proof concerns one-sided approximation in
L of functions of bounded variation by polynomials. That a result on the
degree of polynomial approximation is fundamental, is no surprise for
those who know the beautiful method Karamata invented for the proof of
Tauberian theorems (Karamata [117], Wielandt [187]). Both Freud and
Korevaar applied the Karamata method. Before going into a closer study
of Freud’s work, I shall give a short review of known results on Tauberian
remainders at the time.

3. TAUBERIAN REMAINDER THEOREMS IN (GENERAL

In my mathematical surroundings in Stockholm in the late 1940s there
was an air of mysticism around the topic “remainders in Tauberian
theorems.” It emanated of course from a statement in Wiener’s famous
paper (Wiener [19]). There is a sentence that evidently can be interpreted
in different ways. My guess is that it just means that you cannot say
anything about the remainder in Wiener’s general Tauberian theorem
without further assumptions about the kernel. In fact, in 1938 Beurling had
already given a precise remainder estimate for a special class of kernels.
However, the proofs were not published until 1954 in Lyttkens’ thesis
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(Lyttkens [167]). To see how that result and other later Tauberian remain-
der theorem’s in Wiener’s form are related to Freud’s, we shall transform
Freud’s theorem as stated in Section 2 into Wiener’s form. The com-
putations are rather tedious, but the mam part goes as follows: Introducing
¢ defined by

N

Hy) = He) s

instead of 7, assuming that 7(0)=0 and putting r=e~ " and u=e?, we
obtain after an integration by parts in (2.1) that

[ exp(—(1 +a)(x = y)—exp(y —x)) $(y) dy = O(e ).

Some checking of magnitudes is necessary, but the result is, that formula
(2.1) can be written in Wiener’s form

K ¢(x)=0(e™%), X~ 00, (3.1)

where K # ¢(x)=[*_ K(x—y) ¢(y) dy and ¢ defined above belongs to
L?(—c0, 0} and has the property that for some constant C it holds that

#(x)+ Cx is nondecreasing. (3.2)
The kernel K is given by
K(x)=exp(— (1 +a) x—exp(—x)), (3.3}

and evidently Ke L(— oo, o) with K() = [ e "™ K(x) dx=I(1 + o+ it).
The conclusion (2.2) takes the form

H(x)=0 l/x) X — 00,

It can be shown that Freud’s theorem of Section 2 is equivalent to the
result that, for the special choice of kernel (3.3), the estimate given in (3.1)
combined with the Tauberian condition (3.2) implies that ¢(x)=O(1/x).
At this point it is natural to ask, if the result just mentioned is a special
case of a general theorem. The only general remainder known in 1951 was
Beurling’s, and that concerned kernels for which K(r)~! does not grow
more rapidly than a polynomial of degree » in a strip around the real axis,
the conclusion being that (3.5),

$(x)=0 (exp (— ;T%))

640/46/1-4
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Now it is well known that for the kernel corresponding to the Laplace-
transform K(¢)~'=I(1+a+it)"!is of exponential growth, hence not in
the class mentioned above. Accordingly the best possible estimate (3.4) is
much weaker than (3.5). On the other hand Beurling’s theorem is
applicable to a large class of kernels including those corresponding to
Cesaro summation. The first general remainder theorem covering Freud’s
was not proved until 1962, when I obtained the conclusion (3.4) from the
assumptions (3.1) and (3.2) for kernels in a class E defined as follows.

An integrable function K belongs to E, if there is a function g
holomorphic in a strip |Im z| < b, such that

lg(z)] € M expIm z) for |Imz|<b

and

gx)K(x)=1 for all real x.

Since then many general remainder theorems have been obtained,
applicable to various special kernels (cf. Ganelius 1972). There are of
course also many new special Tauberian remainder theorems. However,
Freud was the first to obtain the precise result in the important case of the
Laplace transform.

4. FREUD’S APPROXIMATION THEOREM AND THE PROOF
OF THE TAUBERIAN REMAINDER THEOREM

As remarked in Section 2 the crucial point in a method to obtain sharp
remainder estimates is the right approximation theorem. I shall now state
Freud’s approximation theorem without reproducing the proof. It should
be mentioned, that Freud’s deep knowledge of approximation theory
enabled him to obtain the following result by a rather straight forward
application of a well known construction by Markov (cf. also Freud [2]
and b for o =1 and Nevai [17] for «>0).

FrREUD’S APPROXIMATION THEOREM. If g is a function of bounded
variation on [0, 1] and o is positive, then polynomials p and P of degree n
can be found, such that

and

Ll (P(x)— P(x)) (10g _)1;>a_1 ot
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Moreover, if p(x) =3 b, x*, P(x) =Y B, x*, then there are constants d and f
independent of n and such that 35 (1b,| + |Bu) < dexp (/).

The approximation theorem will only be applied to the case

_ {0 if 0<x<l/e

g(x)—{x“ i 1e<x<l.

We shall now see how easy the remainder theorem foliows from the

approximation theorem if we apply Karamata’s method. Introducing

o(u)=r1(u)— (/{1 +a)) u* we rewrite the assumption (2.1) in Freud’s
theorem

(4.1)

()= | e do(u)=0(1° 7). (42)

The conclusion shall be

a(x):O( X ) X = o0. (43)

log x

With g given by (4.1) and x ="' we obtain
J(X)zro gle™ ™Y e ™ do(u)
0
:L (g (e—ru)_p(e—tu))e—m do.(u)+fo p(e~ru)e~m do‘(u)

> ~F—(1S:a—)j0°° (gle™™)— ple ™)) e ™ dua—g [bel I7((k+1) 1)

osx”

> —
I'l+o)

> —c(n'x*+ex* 7).

1 a—1 n
[} s)=pton (log ) dom xS bulleor 17

—Iu

In this computation we have used v=e as new variable. Taking
n=c¢log x with a sufficiently small &, we obtain the lower bound in (4.3}.
Repeating the computation with the polynomial P instead of p we get the
upper bound and the theorem is proved.

5. EXTENSIONS AND (GENERALIZATIONS
The remainder theorem of Section 2 is the principal result in Freud’s

paper published in 1951. Already in that paper Freud points out that his
method works for more general remainders than the O(s° %) in (2.1).
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Let © be nondecreasing and let « be a positive number. Assume further that
R is nondecreasing with R(0)=0 and R(ks)<e*R(s). Then

[ emmdw =sT(1+a) 1751 +2(2)), 110, Ir() < R(1),
0

implies that
t(x)=sx*(I'+p(x)), x- o0,

where

< c
P SRRy

The proof follows by the same method. The condition on the function R
excludes rapidly decreasing remainders like exp(—ct~#). It is of a certain
interest that Freud’s method is good enough even in such cases, which in
fact are important for applications to the spectral theory of differential
operators.

That Géza Freud left out such cases in order to get a more lucid
theorem, gave me the opportunity to show (Ganelius [6,7]) that a
straightforward application of his method gives sharp results of interest in
the field of differential equations. A simple result in this direction is as
follows.

Let v and « be as in the previous theorem and assume that

roe‘”‘dr(u):sl“(l+oc)t‘°‘(1+r(t)), t]0
V]
with

lr(t) <coexp(—ct™%), O<e<l.
Then

o(x)=1(x)—sx*=0(x* ¥4+ x5 0.

In the applications of this result it is important that smaller remainders
are obtained for the Cesaro means of the function, viz.

jx (1—o/x)? " do(v) = O(x*—P/1+9), x5 o0
0

(For applications of such results to summability problems for eigenfunction
expansions cf. Bergendal [4].)
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Generalizations of the type just mentioned and methods to obtain them
were given in Freud’s second paper. The pattern is as simple as in the
example above:

If o(x) = O(x%/log R(1/x)), then jg (1 —v/x)?~ ' do(x) = O(x*/(log
R(1/x))?).

In this third paper Freud gave some further extensions and applications.
The result I find most interesting has the following concise form in the case
of power series:

If, with 6 >0, it holds that
Y a,e”™=A+ 0(s%), 510,
0

and

n-— oc

lim inf—2" >0,
logn

then Y a, converges and has the sum A.

This means that under the weaker tauberian condition we still get con-
vergence. The beauty of the result is reinforced by another counter example
of Korevaar’s showing that the Tauberian condition a, = O(log n/n) is not
sufficient for convergence.
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